GREEN AUDIT REPORT

2022-2023

ST. XAVIER'S COLLEGE RANCHI

Dr. Camil Bulcke Path

PB 9, Pin 834001

Ranchi, Jharkhand

Preparedby

Green Campus Committee of SXC RANCHI

GreenAuditTeam

S.N.	NAME	SIGNATURE
1	Dr. Bharti Singh Raipath, Ph.D.	Bella 123
2	Dr. Marcus Barla, Ph.D.	Barla 20: 05.23
3	Dr. Nandita Das, Ph.D.	Manditalas 20.052
4	Dr. Shiv Kumar, Ph.D.	g
5	Dr. Fr. Prabhat Kennedy Soreng, Ph.D.	Son 30/05/23
6	Mrs. ShaliniMinj, MSc	Jan 2015/2022

Table of contents

SN	Topics	page no.
1	Executive summary	03
2	Introduction	09
3	Objective of green audit	16
4	Target areas of Green Auditing	17
5	Methodology adopted	20
6	Survey forms	21
7	Audit stage	26
8	Green audit report	27
9	Suggestions and recommendations	69

Executive Summary

In the past, human beings were less concern with the protection and preservation of natural resources available on the earth but in recent time they are more concern with the conservation of natural resources because now humans have faced many natural disasters which threatened human existence. Economic development is necessary as it provides better facilities for life but it threatens human life as it causes pollution.

Green campus is a concept implemented in many educational institutions, all over the world to make them sustainable because of their mass resource utilization and waste discharge in to the environment and educational institutions are the places where students learn for life how to use resources of the earth sustainably therefore waste minimization plans for the educational institute are now mandatory to maintain the cleanliness of the campus, to find out the environmental performance of the educational institutions and to analyze the possible solutions for converting the educational campus as eco-campus.

St. Xavier's College, Ranchi is deeply concerned and believes that there is an urgent need to address this fundamental problem and reverse the trend. Being a premier institution of higher learning, the college has green policy to keep college campus clean and green so that students may learn to take care of our mother earth our common home and be eco sensitive and be responsible citizens of our country India.

Policy for management of alternative source of energy

Non- renewal energy is limited and causes pollution. Now humans have to look for the renewable sources of energy. In the college, energy sources will be supplied electricity from Jharkhand Vidyuth Board, generators, solar energy (roof as well as street light), invertors, UPS, Biogas, mushroom cultivation. College will replace old tube lights with LED tube lights and bulbs to reduce electricity consumption. There will be people in charges to switch off the tube lights if they are on unnecessarily. Meters will be there to indicate energy consumption.

Green campus policy of St. Xavier's College Ranchi

St. Xavier's College, Ranchi is a NAAC B+ Grade College. It was established in 1944. College celebrated platinum jubilee in 2019. College has - Arts, Commerce, Science and Vocational courses faculties and 9901 students are studying here.

The college is located in a beautiful campus of 6445.24 M² in the heart of Ranchi city. The latitude and altitude of college is 23.3680 N, 85.3263 E

The college has a beautiful campus situated in the heart of Ranchi city. As college has travelled long way and has expanded its dimension, number of students has increased, requirements have also increased yet college will adopt the 'Green Campus Clean Campus' system for environmental conservation and sustainability as MDG and SDG also aim for sustainable development and educational institutions have to play a vital role to achieve these goals especially in NEP. College will manage efficient use of energy, water,

waste and reduce CO₂ level to create an atmosphere where students can learn to be eco sensitive and healthy. College will actively promote the various green initiatives by different committees like (Green campus committee, Eco Task Force, Geo Club, B.Ed. Environment Club, Rotaract Club and Individual department, students and staff members). The college administration will work on the several facets of 'Green and Clean Campus' including Water Conservation, Tree Plantation, Waste Management, Paperless Work, Alternative Energy and Mapping of Biodiversity etc.

The main objectives of green policy will be

- ➤ To introduce and make students aware of real concerns of environment and its sustainability
- ➤ To secure the environment and cut down the threats posed to human health by analyzing the pattern and extent of resource use on the campus.

Main areas

- Water use and management
- Energy use and Conservation
- Alternative source of energy
- Waste management
- E-waste management
- Green area management
- Mapping of Biodiversity
- Cleanliness of the Campus
- Green initiatives

Water management

Avail water sources (pond, well, bore well, supply water) store rain water (ground and roof), proper use and no wastage of water, there will be some people in charges to control water supply. Waste water will be recycled and reused. College will avail pure drinking water etc.

Management of alternative source of energy

Energy sources will be supplied electricity from Jharkhand Vidyuth Board, generators, solar energy (roof as well as street light), invertors, Biogas, mushroom cultivation, use of LED bulbs and tube light. There will be people in charges to switch off the tube lights if they are on unnecessarily.

Waste Management

There will be a waste dumping yard where segregated waste will be disposed. Some of them will be cleaned by municipality but college will have a composter to recycle leaf and food waste, vermicomposting techniques will be used to recycle leaf material. Use of plastics will be band in the campus, teachers and students will be conscientized through captions and quotations, through awareness programmes, cleaners and sweepers will be instructed to segregate the different types of waste material. Dustbins will be placed in the campus and corridors. Science labs which use chemicals will keep the inventory record of the chemicals. The chemical waste will be disposed in a proper way. Physics and chemistry lab will not use kerosene to produce fuel for the lab they will use LPG gas. Zoology lab will not use animals for practical. Single sided used papers will be used for writing and printing in all departments. Exams papers will be sent for pulping and recycling after completion of their preservation period. Metal waste and wooden waste will be given to the authorized

scrap agents for further processing. Some glass bottles will be reused in the laboratories.

E-Waste Management

E-waste generated in the campus (cartridges, old computers, printer, Xerox machines, batteries) will be given to the approved E-waste management groups.

Green management and environment

There will be green campus committee to make campus green and clean. College will keep the campus neat and clean. Greenery will be maintained. Green areas will be divided into different zones and there will be people in charges to look after them. There will a greenhouse to keep plants safe and sound. Gardeners will be appointed to look after the plants. Plants will be named and tagged. Birds and butterflies will not be disturbed. Some quotations will be put up at different places to sensitize students. Tree plantation, awareness programmes will be conducted by different clubs.

The purpose of the audit was to ensure that the practices followed in St. Xavier College Campus are in accordance with the green policy adopted by the College. The methodology includes: documentation of the initiatives, physical inspection of the campus, observation and review of the documentation, interviewing key persons and data analysis, measurements and recommendations. It worked on the several facets of 'Green Campus' including water use and management, energy use and conservation, alternative source of energy, waste management, e-waste management, green area management, mapping of biodiversity and eco consciousness level of the students of the institution. With this in mind, the specific objectives of the audit were to evaluate the adequacy of the management control frame work of environment sustainability as well as the degree to which the departments are in compliance with the applicable regulations, policies and standards. It can make a tremendous impact on students' health and learning, college operational costs and the environment. The criteria, methods and recommendations used in the audit were based on the identified risks.

INTRODUCTION

Green Audit is systematic identification, quantification, recording, reporting and analysis of components of environmental diversity. It aims to analyze environmental practices within and outside the college campus, which will have an impact on the eco-friendly ambience. It was initiated with the motive of inspecting the work conducted within the college campus and departments whose exercises can cause risk to the health of inhabitants and the environment. Green Audit gives a direction to improve the condition of environment. It also tells whether the campus is green or not and indicates the threatening area of risk. Green audit is assigned to the criteria 7 of NAAC, National Assessment and Accreditation Council which is a self-governing organization of India which declares the institutions as Grade A++, A+, A, B++, B+ or B according to the scores assigned during the accreditation.

About college

St. Xavier's College, Ranchi is a NAAC A (third cycle), B+ (fourth cycle) Grade college. It was established in 1944. College celebrated platinum jubilee in 2019. College has - Arts, Commerce, Science and Vocational courses faculties and more than 9901 students are studying here.

The college is located on a beautiful campus of $6445.24~M^2$ in the heart of Ranchi city. The latitude and altitude of college is $23.3680~N,\,85.3263~E$

Vision Statement of the College

St. Xavier College, Ranchi was started by the Ranchi Jesuits Society

called (Society of Jesus) a Christian Religious Order founded by St. Ignatius Loyola in 1540. Since its foundation, the Jesuits have contributed in the field of education throughout the world. The vision drawn from the life and teachings of Jesus Christ gives Jesuit educational institutions a recognizable character and sets before their management, staff, students, parents and the community high ideals of life and service which will inspire them continuously to strive to meet the emerging needs and challenges.

Inspired by this vision the Jesuits in India has been active in the field of higher education serving the nation in the context of plurality of religions and diversity of cultures. Across the world, the Society of Jesus, is responsible for over 1,865 Educational Institutions in 65 Countries. In India, the Society of Jesus, runs 153 High Schools, 38 University College, 14 Technical Institutes and 5 Business Administration Institutes. While Jesuit educational work has always been at the service of the whole nation, irrespective of caste and creed, it recognizes a special responsibility towards the Catholic community.

The Ranchi Jesuit Province through St. Xavier's College envisions the educational development of the Jharkhand state with special attention to the needs of the tribal students of the region.

Mission Statement of the College

To translate the vision and commitments into action:

- A) the college community will strive
 - 1) to set and achieve high academic standards

- in an atmosphere of autonomy.
- 2) to develop Christian leadership of high calibre and integrity.
- 3) to preserve and promote the cultural heritage of the region.
- 4) to strengthen its own faith life.
- 5) to engage in research and extension activities related to the developmental issues of Jharkhand.
- 6) to accord priority to the education of Catholic as well as Scheduled Tribe and Scheduled Caste students.
- 7) to promote vocational and entrepreneurial education.
- 8) to involve parents, staff and students in fruitful interaction.
- 9) to function as a critique and conscience of society.
- B) The College aims to enable the students
 - 1) to set high standards for themselves in every field.
 - 2) to seek and apply knowledge critically to the solution of contemporary problems.
 - 3) to think in a creative, fearless and independent manner.
 - 4) to value and responsibly use their own freedom and respect the freedom of others.
 - 5) to appreciate and respect other faiths and foster religious harmony.
 - 6) to be clear and firm on principles and values and

- act accordingly.
- 7) to contribute to the sustainable socio economic development of the neighborhood, locality and region.
- 8) to be sensitive to those in need and unselfish in service.
- 9) to set themselves free from socio-economic, religious, caste and gender prejudices and act as catalysts of social change.
- 10) to protect, preserve and judiciously use the resources of the earth for the welfare of all.

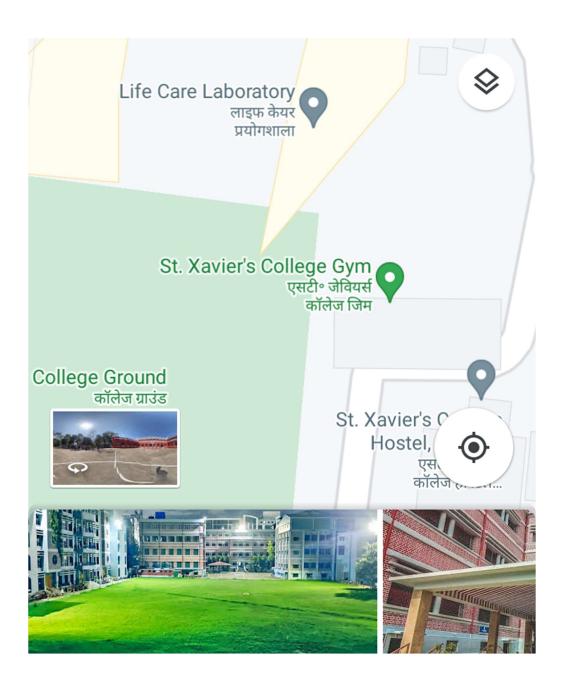
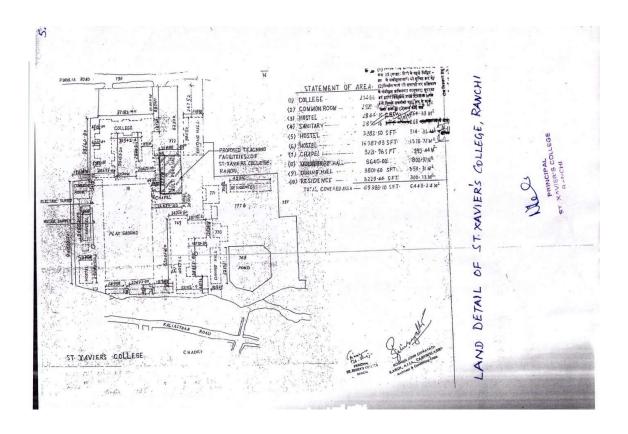


Fig. 1 Location of St. Xavier's college Ranchi

Courses offered by the College


]	P G Courses	- 13		
	M.Sc.	M.Sc. Chemistry	M.Sc. Zoology	M.Sc. Geology

Botany			
M.Sc.	M.A Hindi	M.A English	M. A
Mathemati	ic l		Economics
S			
Mass Com	M.A Politica	M.A Geography	M.A History
	Science		
M. COM			
U G Cours	es –		
	B.A English	B.A Economics	B.A History
Aide	B.Sc. Physics	B.Sc. Botany	B.Sc. Zoology
d	B.Sc. Geology	B.Sc. Chemistry	B.Sc.
Cour			Mathematics
ses	B.Com	B.A Geography	B. A Hindi
	B.A Politica Science	1	
Self-	ELL	Sociology	B Ed
Finan cing	B.Voc. Fashion Technology	n Biotechnology	BBA
CIIIS	Statistics	BJMC	BCA
	Animation	IT	OMSP

The student and faculty strength of the college is listed below:

No of students		9901
No of teachers		103
No of Non-teaching staffs		163
Gents		117
Ladies		46

Physical Structure

The college is located in about $6445.24~M^2$ of land. The built-up area of the college is 27917.25~sqm

Departments	UG 31 PG 13

Laboratories	14
Conference halls	5
Libraries	3 main library+ 31 department libraries
Auditorium	2
Canteens	3

OBJECTIVES OF GREEN AUDIT

The main objectives of this green audit is to assess the environmental quality and the management strategies being implemented in St. Xavier's College, Ranchi. The specific objectives are:

- To assess the quality of the water and soil in the St. Xavier's college campus
- 2. To monitor the energy consumption pattern of the college
- 3. To quantify the liquid and solid waste generation and management plans in the campus.
- 4. To assess the carbon foot print of the college
- 5. To assess whether the measures implemented by St. Xavier's College have helped to reduce the Carbon Footprint.
- 6. To impart environment management plans to the college
- 7. Providing a database for corrective actions and future plans.
- 8. To assess whether extracurricular activities of the Institution support the collection, recovery, reuse and recycling of solid wastes.

9. To identify the gap areas and suggest recommendations to improve the Green Campus status of St. Xavier's College.

TARGET AREAS OF GREEN AUDITING

Green audit forms part of a resource management process. Although they are individual events, the real value of green audit is the fact that they are carried out, at defined intervals, and their results can illustrate improvement or change over time. Eco-campus concept mainly focuses on the efficient use of energy and water; minimize waste generation or pollution and also economic efficiency.

All these indicators are assessed in the process of "Green Auditing of this educational institute". Ecocampus focuses on the reduction of contribution to emissions, procure a cost effective and secure supply of energy, encourage and enhance energy use conservation, promotes personal action, reduce the institute's energy and water consumption, reduce wastes to landfill, and integrate environmental considerations into all contracts and services considered to have significant environmental impacts. Target areas included in this green auditing are water, energy, waste, green campus and carbon footprint.

Auditing for Water Management

Water is a natural resource; all living organisms depend on water. While freely available in many natural environments, in human settlements potable (drinkable) water is less readily available. Groundwater depletion and

water contamination are taking place at an alarming rate. Hence it is essential to examine the quality and usage of water in the college. Water auditing is conducted for the evaluation of facilities of raw water intake and determining the facilities for water treatment and reuse. The concerned auditor investigates the relevant method that can be adopted and implemented to balance the demand and supply of water.

Auditing for Energy Management

Energy conservation is an important aspect of campus sustainability which is also linked with carbon foot print of the campus. Energy auditing deals with the conservation and methods to reduce its consumption related to environmental degradation. It is therefore essential that any environmentally responsible institution examine its energy use practices.

Auditing for Waste Management

Human activities create waste, and it is the way these wastes are handled, stored, collected and disposed of, which can pose risks to the environment and to public health. Pollution from waste is aesthetically unpleasing and results in large amounts of litter in our communities which can cause health problems. Solid waste can be divided into three categories: bio-degradable, non-biodegradable and hazardous waste. Bio-degradable wastes include food wastes, canteen waste, wastes from toilets etc. Non-biodegradable wastes include what is

usually thrown away in homes and educational institutions such as plastic, tins and glass bottles etc. Hazardous waste is waste that is likely to be a threat to health or the environment like cleaning chemicals, acids and petrol. Unscientific management of these wastes such as dumping in pits or burning them may cause harmful discharge of contaminants into soil and water supplies, and produce greenhouse gases contributing to global climate change respectively. Special attention should be given to the handling and management of hazardous waste generated in the college. Bio-degradable waste can be effectively utilized for energy generation purposes through anaerobic digestion or can be converted to fertilizer by composting technology. Non-biodegradable waste can be utilized through recycling and reuse. Thus the minimization of solid waste is essential to a sustainable college. The auditor diagnoses the prevailing waste disposal policies and suggests the best way to combat the problems.

Auditing for Green Campus Management

Trees play an important ecological role within the urban environment, as well as support improved public health and provide aesthetic benefits to campus. In one year, a single mature tree will absorb up to 48 pounds of carbon dioxide from the atmosphere, and release it as oxygen. The amount of oxygen released by the trees of the campus is good for the people in the campus. So while you are busy studying and working on earning those good

grades, all the trees in campus are also working hard to make the air cleaner for you.

Auditing for Carbon Footprint

Burning of fossil fuels (such as petrol, coal) has an impact on the environment through the emission of greenhouse gases into the atmosphere. The most common greenhouse gases are carbon dioxide, water vapour, methane, nitrous oxide and ozone. Of all the greenhouse gases, carbon dioxide is the most prominent greenhouse gas, comprising 402 ppm of the Earth's atmosphere. The release of carbon dioxide gas into the Earth's atmosphere through human activities is commonly known as carbon emissions. Vehicular emission is the main source of carbon emission in the campus, hence to assess the method of transportation that is practiced in the college is important.

METHODOLOGY ADOPTED

The methodology adopted to conduct the Green Audit of the Institution had the following components

Onsite Visit

ten-day field visit was conducted by the Green Audit Team that is green campus committee members. The key focus of the visit was on assessing the status of the green cover of the Institution, its waste management practices and energy conservation strategies etc. The sample collection (water, soil) was carried out during the visits. The water samples from two open wells and two tap water sources

were taken and soil samples from three different places of the campus was collected. The sample collection, preservation, and analysis were done in the scientific manner as prescribed by the standard procedures.

Focus Group Discussion

The Focus Group discussions were held with the Eco task force, Geo club, SEOC, NSS, Rotoract club members, staff members and the management focusing various aspects of Green Audit. The discussion was focused on identifying the attitudes and awareness towards environmental issues at the institutional and local level.

Energy, waste management and Carbon foot print analysis Survey

With the help of teachers and students, the audit team has assessed the energy consumption pattern and waste generation, disposal and treatment facilities of the college. The monitoring was conducted with a detailed questionnaire survey method.

Survey forms

1. Water management

S.N	Parameters	Response	Remarks
1	Source of water		
2	No of Wells		

3	No of motors used
4	Horse power – Motor
5	Depth of well –Total
6	Water level
7	Number of water tanks
8	Capacity of tank
9	Quantity of water pumped every day
10	Any water wastage/why?
11	Water usage for gardening
12	Waste water sources
13	Use of waste water
14	Fate of waste water from labs
15	Whether waste water from labs mixed with ground water
16	Any treatment for lab water
17	Whether any green chemistry method practiced in labs
18	No of water coolers
19	Rain water harvest available?
20	No of units and amount of water harvested
21	Any leaky taps

22	Amount of water lost per day		
----	------------------------------	--	--

23	Any water management plan used ?	
24	Any water saving techniques followed?	
25	Are there any signs reminding peoples to turn off the water?	

2. Energy audit

Room No. /	Electrical	Number	Power	usage time
name	device/			(hr/day)
	items			

Item: Bulbs (CFL, incandescent, LED);
A/c, fan, computer, instruments

3. Waste management

Approximate quantity of waste generated per day (in kg)

Office		
	Non -	

Approx	Biodegradable	biodegradabl	Hazardo	Others
		e	us	
<1Kg				
2-10Kg				
>10Kg				

Laboratories				
		Non -		
Approx	Biodegradable	biodegradabl	Hazard	Others
		e	ous	
<1Kg				
2-10Kg				
>10Kg				

Canteen/kitch	nen			
		Non -		
Approx	Biodegradable	biodegradabl	Hazard	Others
		e	ous	
<1Kg				
2-10Kg				
>10Kg				

Total strength of students, teachers, and Non-teaching staffs

No of Students	
No of Teachers	

No of Non-teaching	g staffs	
Gents		
Ladies		
Total		
How the waste gene	rated in t	the college is managed?
A) Composting/		
Vermicomposting	Yes/no	Remark
B)Recycling		
C)Reusing		
D)Other ways		
E-waste Hazardous waste		
Waste generated in	the colleg	ge?
Solid waste		
Dry leaves		
Canteen waste		
Liquid waste		
Glass	1	
Unused		
equipment		
Napkins		
Others (specify)		
	.1	
Do you use recycl	ed paper i	in college ?
Any waste manage	ement me	thods used ?

4. Carbon foot print analysis

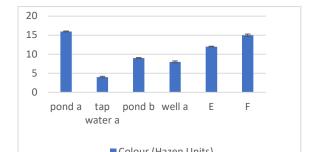
- Total number of vehicles used by the stakeholders of the college. (per day)
- 2 No of cycles used
- No of two wheelers used (average distance travelled and quantity of fuel and amount used per day)
- 4 No of cars used (average distance travelled and quantity of fuel and amount used per day)
- 5 No of persons using public transportation
- No of persons using college conveyance
- 7 No of generators used per day
- 8 Amount of fuel used
- Number of LPG cylinders used in canteen/labs
- Use of any other fossil fuels in the college
- 11 Any suggestion to reduce the use of fuel

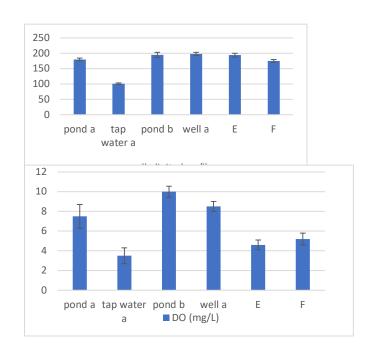
AUDIT STAGE

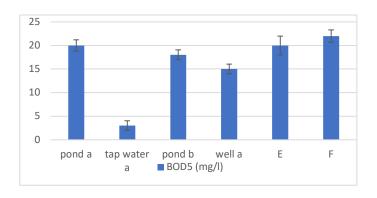
Green auditing in St. Xavier's **college, Ranchi** began with the assessment of the status of the green cover of the Institution followed by waste management practices and energy conservation strategies etc. The team monitored different facilities at the college, determined different types of appliances and utilities (lights, taps, toilets, fridges,

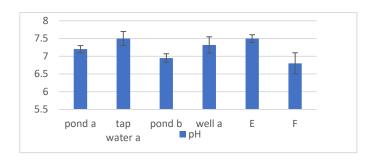
etc.) as well as measuring the usage per item (Watts indicated on the appliance or measuring water from a tap) and identifying the relevant consumption patterns (such as how often an appliance is used) and their impacts. The staff and learners were interviewed to get details of usage, frequency or general characteristics of certain appliances. Data collection was done in the sectors such as Energy, Waste, Greening, Carbon footprint and Water use. College records and documents were verified several times to clarify the data received through survey and discussions. The environment samples including water, soil were from various location of the campus were collected and analyzed at School of Environmental Sciences, ...

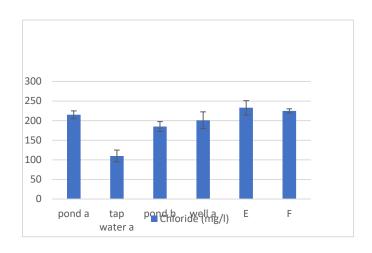
GREEN AUDIT REPORT


Water Quality assessment


Water samples from four different locations were collected and analyzed for its quality parameters. The samples include two well water which are the main water source of the college campus and two tap water samples which is used for canteen and drinking water cum cooler systems. The samples were collected, preserved and transported to school of Environmental Sciences and analyzed for various physio-chemical The parameters. major parameters analyzed include dissolved oxygen, acidity, alkalinity, chloride, hardness, pH, conductivity, total dissolved solids and salinity. The results are presented in the Table 1 The results are comparable with the values of drinking water standards prescribed by different agencies.


Table 1. Results of water quality


Parameters	Well	Well	Тар	Тар	Standard
Tarameters	water 1	water 2	water 1	water2	value
					(BIS)
Dissolved Oxyger	n				
(mg/l)					
Acidity (mg/l)					
Alkalinity (mg/l)					
Chloride (mg/l)					
Hardness (Total)					
Conductivity (µs)					
рН					
Total Dissolved	l				
Solids					
(ppm)					
Salinity (ppt)					
Total coliform					
Fecal coliform					


					n= 3; S	D of abo	ove data				
pond a	0.1	0.5	10	3.2	1.2	1.2	0.95	4.5	0.005	5.75	
tap water	0.2	1.2	15.2	4.2	0.8	1.02	1.45	2.5	0.004	8.66	
pond b	0.12	0.8	12.5	3.65	0.56	1.05	1.99	8.3	0.05	4	
well a	0.23	0.6	21.5	4.55	0.51	1.04	2.04	5.26	0.5	4.655	
E	0.11	0.7	18.23	1.25	0.5	2	1.54	6.25	0.012	6.58	
F	0.3	0.9	5.2	3.84	0.6	1.3	2.321	4.84	0.42	3.25	

The source of water used in the College are two wells present in the campus. These wells are recharging with rainwater from the roof. A total of 18000L of water is pumped out from the well every day (Table 2). Wastage of water from the lab is reduced by adopting microscale analysis. An average of 3,60,000 L of water is used by the College per month.

Table 2.

SL	PARAMETERS	Response	Remarks
NO			
1	Source of water	Wells,	
		Boring,	
		supply	
		water, pond	
2	No of Wells	6	
3	No of motors used	7	
4	Horse power – Motor	5hp-1pc, 3hp- 3pc,	
	_	3hp- 3pc,	

		1.2hp-3pc	
5	Depth of well –Total	40ft	
6	Water level	180 average	
7	Number of water tanks	19	
8	Capacity of tank	5000lt-10	
		2000lt-18	
		1000lt-1	
		100001t-3	
		20000lt-1	

9	Qualitity of water pulliped every	75000 lt/day	
10	Any water wastage/why?	no	
11	Water usage for gardening	yes	
12	waste water sources	Kent water filter, lab, wash basin,wash rooms, kitchen,	
13		Recycled and used for watering the plants	
14	Fate of wastewater from labs	Water with	

		chemical to
		toxic tank
15	Any wastewater treatment for lab	
	water	
16	Whether any green chemistry	yes
	method practiced in labs	
17	Rain water harvest available?	yes
18	No of units and amount of water	5
	harvested	5000001t
19	Any leaky taps	no
20	Amount of water lost per day	
21	Any water management plan	Keys to
	used?	control
		water
		supply,
		pipe lines
		are
		interconnec
		ted
22	Any water saving techniques	Water
	followed?	floater,
		water
		recycled
	Are there any signs reminding	Yes
23	peoples to turn offthe water?	

Waste management

Approximate quantity of waste generated per day (in kg)

Office				
		Non -		
Approx	Biodegradable	biodegradabl	Hazardo	Others
		e	us	
<1Kg	✓	✓	nil	
2-10Kg				
>10Kg				

Laboratories				
		Non -		
Approx	Biodegradable	biodegradabl	Hazard	Others
		e	ous	
<1Kg	✓	✓	✓	
2-10Kg				
>10Kg				

Canteen/kitchen				
		Non -		
Approx	Biodegradable	biodegradabl	Hazard	Others
		e	ous	
<1Kg				

2-10Kg	✓	✓	
>10Kg			

Total strength of students, teachers, and Non-teaching staffs

No of Students		9901
No of Teachers		103
No of Non-teaching staffs		163
Gents		117
Ladies		46

How the waste generated in the college is managed?

B) Composting/		
Vermicomposting	Yes	Remark
B)Recycling	✓	
C)Reusing	✓	
D)Other ways	✓	

Waste generated in the college?

E-waste	✓
Hazardous waste	✓
Solid waste	✓
Dry leaves	✓
Canteen waste	✓
Liquid waste	✓
Glass	✓
Unused	✓

equipment		
Napkins	✓	
Others (specify)		

Do you use	
recycled paper in	
college ?	
Any waste	Both side of the paper used, separation waste,
management	separate Dustin for dry, wet, solid, liquid,
methods used?	biodegradable and non-biodegradable, water
	served in glass during exam not in package
	drinking bottles

Soil Quality assessment

Soil samples were collected from four locations of the campus and analyzed for the basic parameters. The results are tabulated and presented in the table 3.

Table 3

Parameter	n 1 (fruit	2	(Teak	Location 4 (Butterfly garden)
рН	6.5	5.9	6.1	6.2
Total Nitrogen (mg/kg)	55	41	51	53

Total	organic	4	4	4	4
carbon (%)					
Phosphate	(mg/kg)	630	580	621	626

Energy Audit Report

The electricity bill from June 2022 to May 2023 was rupees 2964917. Per month bill was rupees 247076.4166.

Table 4

Sl	Electrical	Number
No	appliances/instruments	
1	CFL	
1	CFL	
2	Tube	454
4	LED bulb	75
5	LED tube	307
6	Projector	38
7	Speakers	12
8	Fan	Celing401,Wall 140
9	Computer	624
10	Laptops	12
11	Printers	54
12	Photostat machine	9
13	Scanner	9

14	UPS	61
15	Induction	
16	A/C	176
17	Refrigerator	12
18	Table fan	7
19	Mixer grinder	
20	Oven	5
22	Centrifuge	3
23	Autoclave	4
24	Ultrasound	
25	Laminar flow	3
26	Exhaust fan	25
27	Iron box	1
28	Sewing machine	33
29	Colour bulb	
30	Incubator	6
31	Distillation unit	3
32	Sanitary napkin	5
	Incinerator	
33	LED dispaly	1
34	Elevator /lift	4

Waste management

Waste management is important for an ecofriendly campus. In a college different types of wastes are

generated, its collection and management are very challenging. The following data provide the details of the waste generated and the disposal method adopted by the college.

Total number of stakeholders in the college:

Total number of building (Class rooms, canteens, office, auditorium, library etc):

Class rooms	99
Canteens	3
offices	17
Auditorium	2
Libraries	2 Main and each Department

Table 5. Different types of waste generated in the college and their disposal

Types of waste	Particulars	Disposal method
E-Waste	Computers, electrical and electronic parts	Direct selling
Plastic waste	Pen, Refill, Plastic water bottles and other plastic containers, wrappers etc	
Solid wastes	Damaged furniture,	Reuse after

	paper waste, paper	rmaintenance energy
	plates, food wastes	conversion
Chemical wastes	Laboratory waste	Neutralise with
		water
Waste water	Washing, urinals,	Soak pits, water
	bathrooms	recycling
Glass waste	Broken glass wares	Direct selling
	from the labs	
Sanitary Napkin	-	Napkin
		Incinerators

Fig. 2 Per day waste generation in class rooms, offices and canteen

place	biodegra	Non-	Othe
	dable	biodegrad	r
		able	wast
			e
office	2-3 kgs		
Class	3-4 kgs		
room			
canteen	3-4 kgs		

Waste management Practices adopted by the college

For the last few years, college is following zero organic waste
protocol throughout the campus. The food waste generated

by the students and staffs are taken by them to their own home, so that, minimum waste is generated inside the campus. In addition, the organic waste generated in the canteen is used as feed for biogas plant and the biogas is used as fuel in college canteen. Vegetable waste and other leaf litters were used to fed in the vermi-compost pit and the resulting vermin-cast is used as manure in the garden. The chemicals from the laboratories are disposed in a sealed tank along with water, so that the chemicals undergo neutralization with the water.

Biodiversity report of St. Xavier's College Ranchi, Jharkhand Table 6. List of plants in the campus

SN	Common/Lo	Scientific Name	No o	ofFamily
	cal name		trees	

	Scientific name	Parkin g area	Qudran gle	Entran ce	Intermidia te	Chap al	Hostel area	Fiel d	Jesui t	Total
	Alstonia scholaris (L.) R.Br.	0			4	1				5
	Swietenia macrophylla King in Hook.	11			4				1	16
	Swietenia mahagoni (L.)									
-	Jacq. Anacardium occidentale	9		5	28		9	4	9	64
	L.	0				1				1
	Artocarpus heterophyllus Lam.	1			1				1	3
	Cassia javanica L.	0					1			1
	Haldina cordifolia (Roxb.) Ridsdale	1	1		1			1		4
	Magnolia champaca (L.) Baill. ex Pierre	0			1		2	1		3
	Mangifera indica L.	1			7		11	3	2	24
	Psidium guajava L.	1			4					5
	Ficus elastica Roxb. ex	4			4					0
-	Hornem. Gmelina arborea Roxb.	1			1					2
	ex Sm	0			9				1	10
	Grevillea robusta A.Cunn. ex R.Br.	1						15		16
	Holoptelea integrifolia (Roxb.) Planch.	0								0
	Jacaranda mimosifolia	1								1
	Litsea glutinosa (Lour.) C.B.Rob.	0				1				1
	Madhuca longifolia					·				-
-	J.F.Macbr.	0	`	1						1
	Millettia pinnata	1								1
	Monoon longifolium (Sonn.) B.Xue &									
-	R.M.K.Saunders	7	10	4	24	7	23		18	93
	Roystonea regia	10	5							15
	Schleichera oleosa (Lour.) Oken	3		1	8					12
	Shorea robusta		1			1			2	4
	Tectona grandis L.f.	21			3				12	36
	Pterocarpus indicus				1	1				2
	Persea americana				1					1
	Unknown 2				1					1
	Dalbergia sisso				8				2	10
	Melia azedarach				4		1			5
	Delonix regia				7			1		8

Moruspapyrephera		2					2
Peltopharum pterocarpum		1					1
Bombax ceiba		1					1
Caryota urens		1					1
Melaleuca viminalis		5	1				6
Taberanemontana coronaria		3					3
Thuja .sp		1					1
Cascabela thevetia		2					2
ficus unknown		1					1
ixora		3					3
pterospermum acerifolium		1					1
phyllanthus emblica			1				1
bauhinia purpurea			1				1
tamarindus indica				1			1
ravenala madagascariensis				2			2
phoenix sp.				1			1
punica granatum				1			1
carica papaya				1			1
moringa oleifera					1	3	4
unknown 3						1	1
cocos nucifera						2	2
annona squamosa						1	1
Grand Total							459

	HERBS AND	SHRUBS	
1	Kamal	Agave americana	Aspargaceae
	cactus		
2	Chirchithi	Achyranthus aspara	Amaranthaceae
3	Shatawar	Asparagus recemosa	asparagaceae
4	Musk basil	Basilicum polystachyon	Lamiaceae
5	Akwan	Calotropis gigantea	Asclepediaceae
6	Kordiline	Cordyline fruticosa	Asparagaceae
7	Cycas	Cycas revoluta	Cycadaceae
8	Cakor	Cassia tora	Fabaceae
9	Sastanput	Chromolaena odorata	Astraceae
10	Bhasat	Clerodendron	Lamiaceae
		infortunatum	
11	Areca palm	Dypsislutescens	Arecaceae
12	Lucky	Dracaena sanderiana	Aspragaceae
	bamboo		
13		Emblica robusta	Phyllantheaceae
13	Dudhiya	Euphorbia hirta	Euphorbiaceae
14	Christ thorn	Euphorbia milli	Euphorbiaceae
15	Mexican	Euphorbia pulcherima	Euphorbiaceae
	flame leaf		
16	Masarpakha	Platycladus orientalis	Cupressaceae
17	Sword fern	Polystichum munitum	Dryopteridaceae
18	Travelers	Ravenala madagareinsis	Strelitiziaceae
	palm		
19	Brahma	Saussurea obvallata	Astearceae
	kamal		

20	Boat lily	Tradscantia spathacea	Commoleniaceae
21	Dracaena	Dracaena	Asparagaceae
22	chasku	Glochidion lanceolarium	Phyllanthaceae
23	Dasmas	Grona heterocarpos	Fabaceae
24	Ethas	Helicteres isora	Malvaceae
25	Swiss	Monstera deliciosa	Araceae
	cheese plan		
26	Putus	Lantana camara	Verbenaecae
27	Hyssop	Cuphea hyssopifolia	Lythraceae
28	Peace lilly	Spathiphyllum kochii	Araceae
29	Cast iron	Aspidistra spp	Asparagaceae
30	Poinsettia	Euphorbia pulcherima	Euphorbiaceae
31	Thaumatop	Thaumatophyllum	Araceae
	hyllum	Xanadu	
32	Lajwanti	Mimosa pudica	Fabaceae
33	Harsingar	Nyctanthus arobortristris	Oleaceae
34	Bhuinamla	Phyllanthus niruri	Phyllanthacae
35		Phyllanthus virgatus	Phyllanthacae
36	Rattan jat	Jatropha curcus	Euphorbiaceae
37	Mahbal	Sida acuta	Malvaeae
38	Bal	Sida cordifolia	Malvaeae
39	Bal	Sida rhombifolia	Malvaeae
40	Macoi	Solanum nigrum	Solanaceae
41	lemon	Citrus limon	Rutaceae
42	Rangaini	Solanum xanthcarpum	Solanaceae
43	Creeping	Oxalis corniculata	Oxalidaceae
	wood sorrel		

44	Chagra	Oxalis latifolia	Oxalidaceae
45	Congress grass	Parthenium hysterophorus	Asteraceae
46	Texas fog fruit	Phyla nodiflora	Verbenaceae
47	Beery	Physalis minima	Solanaceae
48	Small knotweed	Polygonum plebeium	Polygonaceae
49	Wild petunia	Ruellia prostrata	Acanthaceae
50	Licorice weed	Scoparia dulcis	Scrophulariaceae
51	Spiny sowthistle	Sonchus apsera	Asteraceae
52	Toothache plant	Sonchus oleraceus	Asteraceae
53	Akarkara	Spilanthes calva	Asteraceae
54	Sindwar	Vitex negundo	Verbenaceae
55	Coat buttons	Tridax procumbens	Asteraceae
56		Volutarella divaricata	Asteraceae
57	Cocklebur	Xanthium strumarium	Helianthaceae
58	Ber	Zizyphus oenoplia	Rhamnaceae
GRAS	SSES		1
1	Dub grass	Cynodon dactylon	Poaceae
2	Little leaf	Phalaris minor	Phalaridacee
3	Rabbitfoot	Polypogon monspeliensis	Poaceae

	grass		
4	Green	Setaria viridis	Poaceae
	foxtail		
5	Johngrass	Sorghum halapense	Poaceae
6	Indian drop	Sporobolus diander	Poaceae
	seed		
7	Wavy leaf	Oplismenus burmannii	Poaceae
8	Charikata	Chrysopogon aciculata	Poaceae
9	Nanuh	Chrysopogon montanus	Poaceae
10	Finger grass	Fimbristylis miliacea	Cyperaceae
11	Love grass	Eragrostis tenella	Poaceae
12	Finger grass	Chloris barbata	Poaceae
13	Makra	Dactyloctenium aegyptium	Poaceae
CLIM	IBERS	1	
1		Clematis spp.	Ranunculaceae
2	Scarlet clock	Thunbergia coccininea	Acanthaceae
	vine		
3	Morning	Ipomea cairica	Convulvulaceae
	glory		
4		Cissus repanda	Vitaceae
	FAUNA BIRDS	3	
1	Domestic	Anser anserdomesticus	
	goose		
2	Kite	Milvus migrans	
3	Rock pigion	Columba livia	
4	Cattle egret	Bubulcus ibis	
5	Black drogo	Dicurus macrocercuser	

6	House crow	Corvus splendens
7	Common	Acridotheres tristis
	myna	
8	House	Passer domesticus
	sparrow	
9	Jungle	Argya striata
	babber	
	SNAKES	
1	Keelback	Rhabdophis subminiatus
2	Braminy	Indotyphlops brahminus
	blind snake	
3	Buff	Amphiesmas tolatum
	stripped	
	keelback	
	LIZARDS	
1	Oriental	Calotes versicolor
	garden	
	lizard	
2	Indian stink	Sphenomorphus indicus
3	Common	Podarcis muralis
	wall lizard	
	DRAGONFLIE	S
1	Green mask	Orthetrums abina
	hawk	
2	Blue marsh	Brachydiplaxs obrina
	hawk	
3	Indian blue	Caconeura ramburi

	bambootail	
4	Saffron	Pseudagrio nrubriceps
	faced blue	
	dart	
	BUFFERFLIE	S
1	Common	Euplea core
	crow	
	butterfly	
2	Common	Catopsilia pomona
	emigrant	
3	Indigo flash	Rapala varuna
4	Common	Mycalesis perseus
	bush brown	
	SPIDERS	
	Cross spider	Argiope aemula
1	House	Hasarius adansoni
	jumper	
2	Heavy	Hyllus semicupreus
	bodied	
	jumper	
3	Wall jumper	Heteropoda venatoria
	CRICKET ANI	O GRASSHOPPERS
1	Field cricket	Gryllus campestris
2	House	Acheta domesticus
	cricket	
3	Mole cricket	Gryllotalpidae
4	Long horned	Tettigoniidae
	ı	

	grasshopper		
5	Cone headed	Acrida ungarica	
	grasshopper		
6	Migratory locust	Nomadacris succincta	
	MAMMALS		
1	House mouse	Mus musculus	
2	Fruit bat	Pteropus medius	
	ANTS		
1	Yellow crazy	Anoplolepis gracilipes	
2	Carpenter	Camponotus radiatus	
3	Indian black	Camponotus compressus	
4	Fire ant	Solenopsis invicta	
5	Little black ant	Monomorium minimum	

Campus farming

The college has started a novel venture of cultivation of fruit trees in a 30 cent area of the campus. In addition, Organic vegetable farm, medicinal plant gardens were also properly maintained outside the campus.

Routine Green Practices

Every year college celebrates World Environment Day, Van Mahotsav, World Water Day and Ozone Day in the campus. The main focus of these programems is to provide awareness to the students about the importance of the environment, its conservation and sustainable use of environmental resources. The programmes are conducted through seminars, poster presentation, quiz competition debates etc.

Reports of some of the activities (31 August 22-31August 2023)

Water harvesting for PG and Hostel B block, waste water storage and recycling, tree plantation, deepening of water shade, butterfly diversity study, naming of the plants, soil testing, water tasting

Green slogans

Green campus clean campus, ban on use of plastics, cleanliness is next to Godliness

Carbon Foot Print Analysis

- 1. Total number of vehicles used by the stakeholders of the college
- 2. Number of cycles used:
- 3. No: of two wheelers used: 120 teachers + 1268 students

Average distance

travelled: 2 km

Average quantity of fuel used: ½ Ltr/Day

4. No: of cars used 85

Average distance travelled: 3 km

Average quantity of fuel used: 1

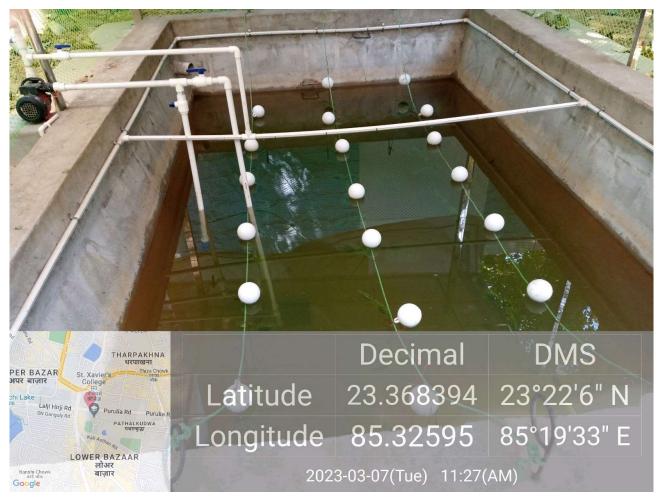
Ltr

- 5. No: of persons using public transportation:
- 6. No: of persons using college conveyance: ----

- 7. No: of generators used per day: 2 (180 KVA AND 250 KVA JAKSON) (21 hrs. / Month)
- 8. Amount of fuel used: 1449 Ltrs/ Month
- 9. No: of LPG cylinders used in canteen/ Labs:
- 10. Use of any other fossil fuels in the college: Using firewood in the college canteen: burnt coal and fire wood
- 11. Any suggestion to reduce the use of fuel: -----

Green initiative of 22-23

- 1. Water shade for storing and remediation
- 2. Installation of composter machine
- 3. Waste dumping pit for leaf composting
- 4. Installation of lighting conductor

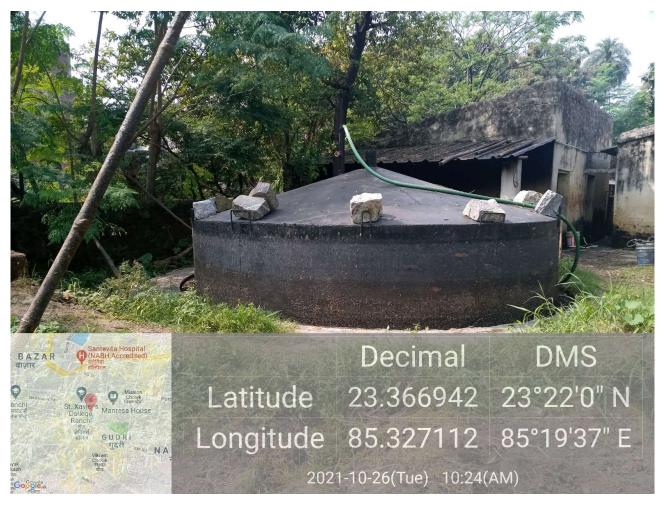

Plantation on world environmental day

Van mahotsav day

Land fill for dumping bottles

Pearl Culture

Water storage


Water reused

Rain water harvesting

Lab chemical waste disposal

Bio gas plant

Water shade

Solar panel

Composter machine

Dry leaves composting pit

Vermi composting

Mushrooms cultivation and training

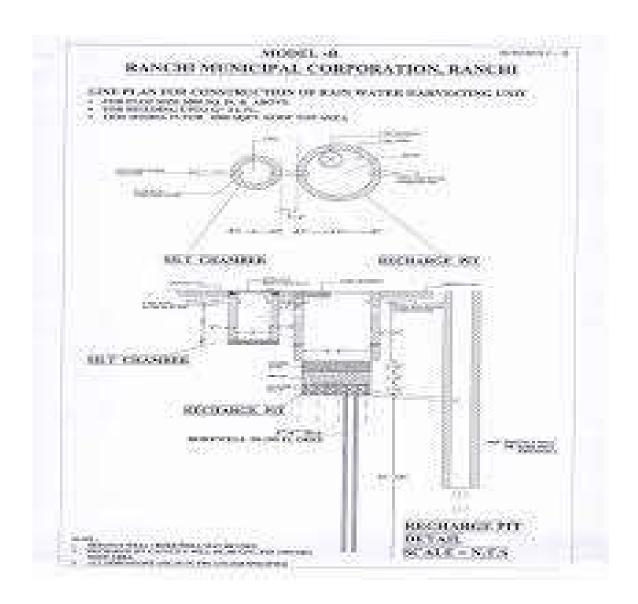


Fig. 3 Schematic diagram of water harvesting and its utilization

SUGGESTIONS AND RECOMMENDATIONS

Water Management

The wells can be recharged with rainwater from rooftops of new building. The rain water can also be used as source for drinking water. The coolant water can be recycled through a separate plumbing system.

The canteen waste can also be subjected to aerobic composting by setting-up of few composting yards in the campus. This will provide a chance for the students to learn by seeing and operating such compost yards by themselves.

Energy management

The energy audit recommends to avoid the use of more energy consuming electrical appliances and to replace with more environment friendly and energy efficient appliances in the college. The potential of renewable energy sources has to be explored.

In order to increase the carbon credit and greenery of the campus, it is recommended to plant more indigenous and evergreen / fruit trees inside the campus.

Waste Management

Try to avoid the use of plastic in the campus, and to encourage the use of biodegradable materials as alternatives. Try to achieve the goal of plastic free campus. Recycle the paper waste.